Research and Refugees – Edinburgh genetics during the 1940s

George Clayton

Last Friday I delivered a talk on genetics in Edinburgh during the 1940s as part of the Scotland-wide Festival of Museums, for which Edinburgh University Library and Collections took the 1940s as its inspiration. This was of course a turbulent decade for the world in general, but not least for the science of genetics. In the four decades since the rediscovery of Mendel’s laws in 1900, scientists were gaining a greater understanding of the gene through the chromosome theory of inheritance and mutation studies, yet the discovery of the structure of DNA itself was yet to be discovered. The 1940s represented a crossroads for genetics, and Edinburgh was an important world player in its future.

Let us begin in the year 1939, when Edinburgh’s Institute of Animal Genetics hosted the prestigious 7th International Congress of Genetics. Originally scheduled for Moscow in 1937, the repressive Stalinist regime made this impossible. After some discussion, Edinburgh was chosen as the most appropriate location for the Congress, now rescheduled for the last week in August 1939. Over 40 Russian scientists were to give papers, alongside delegates from all over the world. However, it would not be plain sailing. Shortly before the Congress was due to begin, the director of the Institute Francis Crew received word that the Russians had been forbidden to attend, and the Congress programme had to frantically reshuffled. Things went from bad to worse once the Congress actually began, as war erupted across Europe and delegates from various countries began to return to their home countries while they could. Once the Congress was over, Crew, who was on the Territorial Reserve of officers, was mobilised, and posted to the command of the military hospital at Edinburgh Castle. He left the Institute in the hands of poultry geneticist Alan Greenwood.

KB Home Guard transport

The King’s Buildings Home Guard Transport Unit

During the lean five years which followed, the Institute did its bit for the war effort. The land adjoining the Institute building was used for allotments for growing animal feed and planting vegetables. All male staff joined the ARP or Home Guard as well as the Watch and Ward parties for the protection of University buildings, while the women were involved in First Aid work. The annual report for 1940-41 records that everyone was given ‘a daily dose of halibut liver oil to reduce the incidence of winter colds’! Genetics teaching and research continued as much as possible by a skeleton staff, including Charlotte Auerbach, who would make a major scientific discovery during this period.

Lotte Auerbach, Wadd birthday album

Charlotte Auerbach

Charlotte (‘Lotte’ to her friends) Auerbach was from a scientific German Jewish family, and had sought refuge in Edinburgh after being dismissed from her teaching job in Berlin under Hitler’s anti-Semitic laws. Once established at Crew’s Institute, she had begun a developmental study of the legs of Drosophila, the fruit fly. But the arrival at the Institute of Hermann Joseph Muller in 1937 changed Auerbach’s career forever. Muller was the outstanding scientist of his generation: he had been part of Thomas Hunt Morgan’s famous ‘Fly Room’ at Columbia University in the 1910s, helping to formulate the groundbreaking chromosome theory; Muller’s later discovery that X-rays cause mutation, gained him the Nobel Prize in Physiology or Medicine. But he arrived in Edinburgh a broken man after undergoing political and racial persecution in America, Germany and the Soviet Union. Muller had a radical effect on the staff and students at the Institute, and he quickly interested Charlotte Auerbach in mutation studies.

In 1940, the year Muller returned to America, Auerbach and her colleague J.M. Robson were tasked with conducting research into mustard gas. They were not told the true nature of the work, which had been commissioned by the Chemical Defence Establishment of the War Office. Auerbach reported sustaining horrific injuries to her skin from working with the gas with inadequate apparatus, but it shortly became clear that the results were astonishing for the science of genetics. Mustard gas caused mutations in similar ways to X-rays. Although this important discovery had to be kept confidential until after the war, Auerbach would be awarded the prestigious Keith Prize from the Royal Society of Edinburgh for the work.

Waddington portrait

Conrad Hal Waddington

Once the war ended, it was assumed that Crew would return to the Institute and that research would continue much as before. However, Crew felt he had been left behind by recent advances in genetics, and decided to transfer to the Chair of Public Health and Social Medicine at the University. Around the same time, the government were looking to move scientific research into areas of agricultural interest, following the acute food shortage crisis of the war years. It was decided to establish a National Animal Breeding and Genetics Research Organisation (NABGRO, later ABRO), and Edinburgh’s strong track record in genetics, animal breeding research and veterinary medicine made it the obvious choice. Conrad Hal Waddington, a developmental biologist and embryologist, was appointed director of the new Genetics Section of NABGRO, which moved to occupy the more-or-less empty Institute building. Alan Greenwood moved to become director of the newly-formed Poultry Research Centre, next door to the Institute.

Staff socialising at the Institute of Animal Genetics, c. 1955

Staff socialising at the Institute of Animal Genetics, c. 1955

ABRO’s work was to be split between research into fundamental work on genetics and the applied science of animal breeding and livestock improvement. However, conflict soon arose between the experimental geneticists and the animal breeders, which was not helped by the rather bizarre initial arrangement of Waddington, his staff and their families living together under one roof, taking their meals communally and driving to work together every day. As might be imagined, there were some scandals and arguments, and eventually the arrangement disintegrated and administrative shifts took place to accommodate the rift.

Waddington set about recruiting as many promising research workers as he could, including some of his old army contacts from his days in Operational Research and Coastal Command. One scientist who joined the Institute at this time, Toby Carter, had been in the RAF at the time of the fall of Singapore, and had commanded the only boat to escape towards Java.  A diploma course in genetics was established, and laboratory space increased apace. By 1951, Waddington’s staff numbered 90 and the Institute grew to become the largest genetics department in the UK and one of the largest in the world.

By the time the 1950s arrived, molecular biology was on the horizon, paving the way towards advances in genomics and biotechnology which we see today. Edinburgh has consistently remained at the forefront of these advances, but it is interesting to reflect that early organisations such as the Institute of Animal Genetics and ABRO paved the way, and that the 1940s was a hugely important decade for this evolution.

Clare Button
Project Archivist

New Strides, Old Stripes: Zebras and the tsetse fly

Glass slide, which probably once belonged to James Cossar Ewart, showing the tsetse fly (Coll-1434/3139)

Glass slide, which probably once belonged to James Cossar Ewart, showing the tsetse fly (Coll-1434/3139)

It was announced last week that scientists have deciphered the genetic code of the tsetse fly, which offers hope of eradicating one of Africa’s most deadly diseases. The fly, which is only found in Africa, carries parasitic micro-organisms which cause sleeping sickness (trypanosomiasis) in humans by attacking their circadian rhythms (biological clock) and can be fatal if left untreated. As well as the threat to people, the tsetse can have equally devastating effects on animals, particularly livestock, causing infertility, weight loss and decrease in milk production. By also rendering animals too weak to plough, the consequences for farmers can be catastrophic. Since the parasite can evade mammals’ immune systems, vaccines are useless, and control of the tsetse is currently only achievable through radiation, pesticides or trapping.

James Cossar Ewart with one of his zebras in Penicuik, outside Edinburgh, c.1900 (GB 237 Coll-14/4/6)

James Cossar Ewart with one of his zebras in Penicuik, outside Edinburgh, c.1900 (Coll-14/4/6)

Concerns about the tsetse fly in Africa date from far before such advances in genetics could hope to help. There are several letters in James Cossar Ewart’s archives which give an insight into how the problem was being dealt with over a century ago. As you may remember from other posts, Ewart, Professor of Natural History at the University of Edinburgh from 1882 to 1927, famously conducted cross-breeding experiments with zebras and horses on his home farm in Penicuik. It is perhaps not too surprising then, that zebras featured in Ewart’s thoughts about the tsetse fly…

Ewart’s letters show that between 1903 and 1909 he was corresponding with various individuals involved in the administration of East Africa (which was then a protectorate of the British Empire), where the tsetse fly was a great problem, particularly where animals such as horses – which were invaluable for transport – were being infected. Ewart believed his zebras could be the solution, if it could be shown that they were immune to the disease the fly carried. (Ewart had already been researching the potential of zebras and zebra hybrids as alternative pack and transportation animals in military, mining and agricultural contexts around the world). However, in June 1903, a letter from Ewart’s regular correspondent, the German animal dealer and trainer Carl Hagenbeck, regretfully informed Ewart that three zebras had died in Berlin after being infected. However, hope was not lost; a month later, Alice Balfour (sister of the 1st Earl of Balfour) wrote to Ewart wondering whether cross-breeding infected zebras with healthy horses might lead to an immune hybrid strain being created. As a matter of fact, zebras are indeed immune to the bite of the tsetse, with some theories holding that zebras have evolved stripes to confuse the flies and deter attack. In 1909, the author, soldier and hunter Lieutenant-Colonel John Henry Patterson wrote to Ewart stating that it was a shame zebras were not easily domesticated, as East Africa sorely needed animal transport immune from ‘the fly’.

Glass slide, which probably once belonged to James Cossar Ewart, showing the distribution of the tsetse fly across Africa (GB 237 Coll-1434/2058)

Glass slide, which probably once belonged to James Cossar Ewart, showing the distribution of the tsetse fly across Africa (Coll-1434/2058)

 

We don’t know from Ewart’s correspondence whether zebras did end up being used in East Africa, although they have remained useful to the present day – in 2010, for instance, it was announced that cattle in East Africa were being scented with zebra odour in order to deter the tsetse!

 

 

These letters offer an insight into ways of tackling the tsetse problem through species selection and cross-breeding before scientific advancement enabled the full sequencing of the tsetse genome.

Read more about the sequencing of the tsetse here:
http://www.theguardian.com/global-development/2014/apr/25/scientists-crack-genetic-code-tsetse-fly-africa-sleeping-sickness

See the catalogue of James Cossar Ewart’s paper here:
http://www.archives.lib.ed.ac.uk/towardsdolly/cs/viewcat.pl?id=GB-237-Coll-14&view=basic

Clare Button
Project Archivist