Hermann J Muller (1890-1967), American Geneticist: Radiation and Mutation Studies in the USA, USSR and Edinburgh

Muller LeninContinuing with the Soviet –Edinburgh genetics link, this week’s post focuses on the American geneticist and Nobel laureate, Hermann Joseph Muller (1890-1967) known for his work on the physiological and genetic effects of radiation. Born in New York City, he attended Columbia College for both his undergraduate and graduate degrees focussing on biology and the Drosophila genetics work of Thomas Hunt Morgan’s fly lab and was an early convert of the Mendelian-chromosome theory of heredity — and the concept of genetic mutations and natural selection as the basis for evolution. He formed a Biology Club and also became a proponent of eugenics; the connections between biology and society would be his perennial concern. Muller’s career first took him to the William Marsh Rice Institute, now Rice University  in Houston in 1915, then back to Columbia College in 1918 where he continued teaching and expanding on his work on mutation rate and lethal mutations. In 1919, Muller made the important discovery of a mutant (later found to be a chromosomal inversion) that appeared to suppress crossing-over, which opened up new avenues in mutation rate studies. He was additionally interested in eugenics and investigated After Columbia, he went to the University of Texas and began to investigate radium and x-rays and the relationship between radiation and mutation.  After a period of time Muller became disillusioned with the political situation in the United States and life in Texas and so, in 1932 he moved to Berlin, Germany to work with Nikolai Timofeev-Ressovsky, a Russian geneticist. Initially, his move was to be a limited sabbatical that turned into an eight-year five country stay. Later in 1932 Muller moved to the Soviet Union after being investigated by the FBI due to his involvement with the leftist (Communist) newspaper, The Spark, that he contributed to when in Texas. In Leningrad (now St. Petersburg) then Moscow, Muller worked at the Institute of Genetics where he imported the basic laboratory equipment and flies for a Drosophila lab.Muller Human Genetics USSR At the Institute, Muller organized work on medical genetics and explored the relationship between genetics and radiation in more detail and completed his eugenics book, Out of the Night in which the main ideas dated to 1910. By 1936 Stalin and Lysenko were making it difficult for scientists and geneticists to work in the USSR (see previous post on the Lysenko Controversy) and Muller was forced to leave after Stalin read a translation of his eugenics book.

Muller moved to Edinburgh in September 1937 with c250 strains of Drosophila and began working for the University of Edinburgh. In 1939 the Seventh International Congress on Genetics was held in Edinburgh and Muller wrote a ‘Geneticists’ Manifesto’ in response to the question, “How could the world’s population be improved most effectively genetically?”

In 1940, he moved back to the United States to work with Otto Glaser at Amherst College and consulted on the Manhattan Project as well as a study of the mutational effects of radar. In 1945, owing to difficulties stemming from his Socialist leanings, he moved to Bloomington, Indiana to work in the Zoology Department at Indiana University. In 1946, he was awarded the Nobel Prize in Physiology or Medicine “for the discovery that mutations can be induced by x-rays”.

Muller signature visitors book

In 1955 Muller was one of eleven prominent intellectuals to sign the Russell-Einstein Manifesto, the upshot of which was the first Pugwash Conference on Science and World Affairs in 1957, which addressed the control of nuclear weapons. He was a signatory (with many other scientists) of the 1958 petition to the United Nations, calling for an end to nuclear weapons testing, which was initiated by the Nobel Prize-winning chemist Linus Pauling.[3]

3 – John Bellamy Foster (2009). The Ecological Revolution: Making Peace with the Planet, Monthly Review Press, New York, pp. 71-72.

 

Leave a Reply

Your email address will not be published. Required fields are marked *