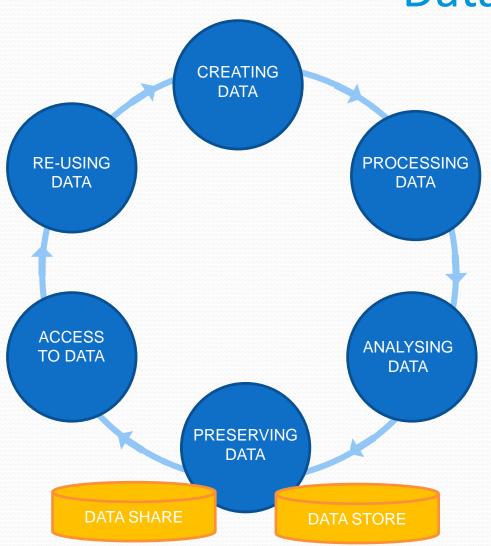
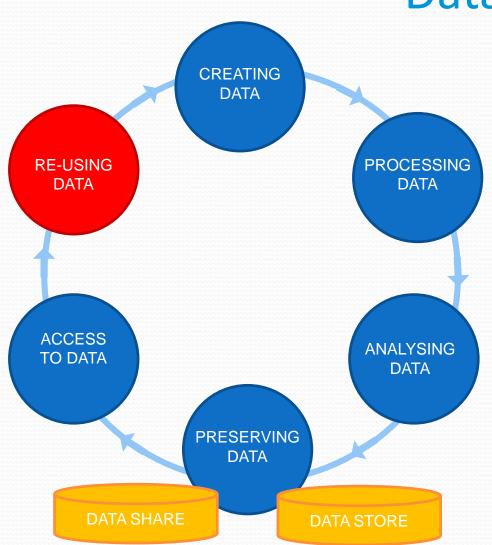
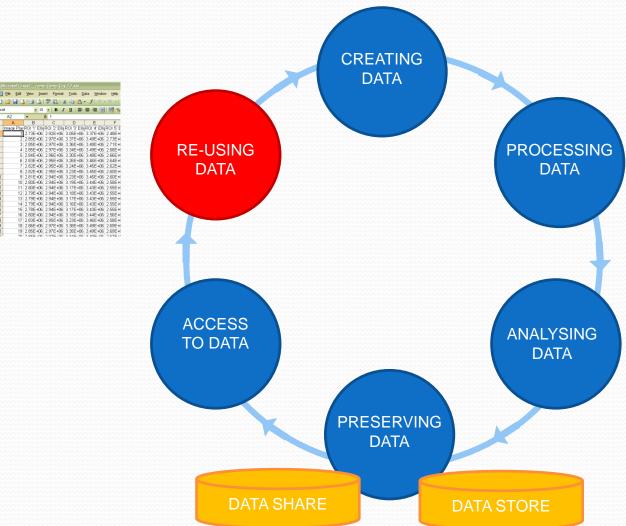


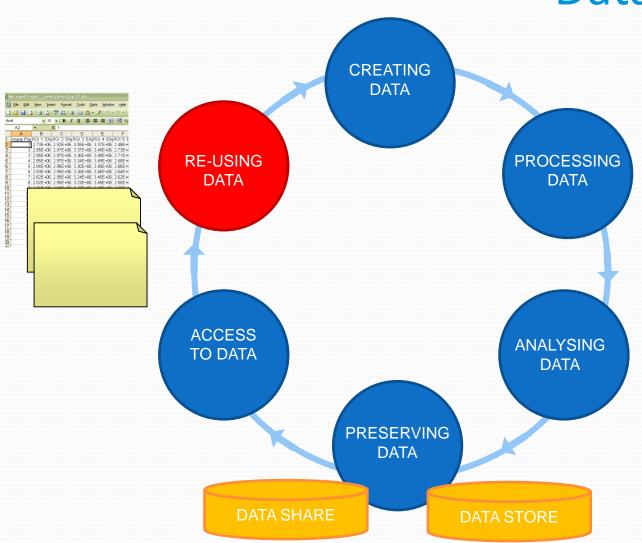
Tipping the balance


introducing data management on a centre-wide level

Tomasz Zieliński, Eilidh Troup, Andrew Millar







Data Martin, Saran F.; Noorgally, Zeenat Β.; van Ooijen, Geroen; Barrios-Lierena, Martin Ε.; Simpson, I. Ian; Millar, Andrew J.; Hindle, Matthew M.; Thierry Le Bihan

Date Available:

2014-06-24

Citation:

Martin, Sarah F.; Noordally, Zeenat B.; van Ooijen, Gerben; Barrios-Llerena, Martin E.; Simpson, T. lan; Millar, Andrew J.; Hindle, Matthew M.; Thierry Le Bihan. (2014). The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species, [Dataset]. University of Edinburgh. SynthSys and School of Biological Sciences. http://dx.doi.org/10.7488/ds/72.

Dataset Description (abstract): Background The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. Results Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phospho-proteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways - TOR, MAPK, and the circadian clock - we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. Conclusions We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.

DATA SHARE

DATA STORE

ROI * Eliip ROI 2 Eliip ROI 3* Eliip ROI 4* Eliip ROI 5* 273E-06 292E-06 3 03F-06 0 3 37E-06 2 48E+0 2 85E+06 2 97E-06 3 38E-06 3 48E-06 2 73E+1 285E+06 2 97E-06 3 30E-06 3 48E-06 2 73E+1 286E+06 2 95E+06 3 48E-06 2 86E+0 2 84E+06 2 95E+06 3 95E-06 3 95E-06 2 95E+06 3 95E-06 2 95E-06 2 95E-06 95E-

2.83E+06 2.95E+06 3.26E+06 3.46E+06 2.64E+1 2.82E+06 2.95E+06 3.24E+06 3.45E+06 2.62E+1 2.82E+06 2.95E+06 3.23E+06 3.45E+06 2.62E+1 Hindle et al. BMC Genomics 2014, 15:640 http://www.biomedcentral.com/1471-2164/15/640

Data Creator:

ıvıartın, Saran F.; Noordaliy, Ian; Millar, Andrew J.; Hindle

Date Available:

2014-06-24

Citation:

Martin, Sarah F.; Noordally, lan; Millar, Andrew J.; Hindle Ostreococcus tauri: core eu University of Edinburgh. Syr /ds/72

Dataset Description (abstract):

Background The current kn organisms. There is a press eukaryotes, which will lead eukaryote model for signallir components. The alga Ostre less than 8,000 genes, it rep revealed 133 protein kinases conducted phospho-proteom the catalytic protein-kinases and divergence of O. tauri re laboratory models Arabidops Many kinase clades in O. ta diversity, whereas TKL and / lost in A. thaliana but retain MAPK, and the circadian cle demonstrate conserved site: conclude that O. tauri satisf related to H. sapiens ortholo O. tauri is therefore a suitab

DATA SHARE

RESEARCH ARTICLE

Open Access

The reduced kinome of *Ostreococcus tauri*: core eukaryotic signalling components in a tractable model species

Matthew M Hindle^{1,4}, Sarah F Martin^{1,2}, Zeenat B Noordally^{1,2}, Gerben van Ooijen^{1,2}, Martin E Barrios-Llerena^{1,2}, T lan Simpson^{3,4}, Thierry Le Bihan^{1,2} and Andrew J Millar^{1,2*}

Abstract

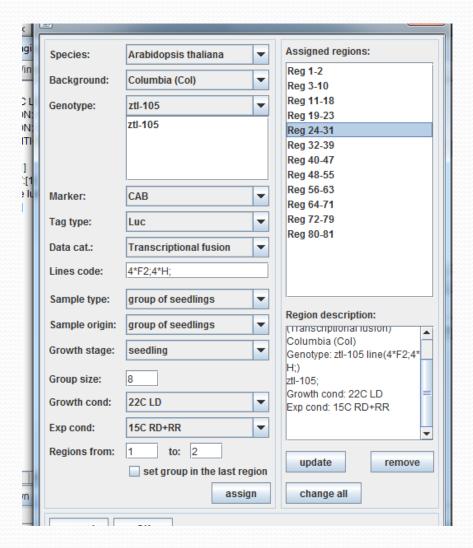
Background: The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga *Ostreococcus tauri* is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette.

Results: Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of *O. tauri* representatives in comparison to the well-studied kinomes of the laboratory models *Arabidopsis thaliana* and *Saccharomyces cerevisiae*, and of *Homo sapiens*. Many kinase clades in *O. tauri* were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in *A. thaliana* but retained in *O. tauri*. For three, contrasting eukaryotic pathways – TOR, MAPK, and the circadian clock – we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs.

Conclusions: We conclude that *O. tauri* satisfies our two central requirements. Several of its kinases are more closely related to *H. sapiens* orthologs than *S. cerevisiae* is to *H. sapiens*. The greatly reduced kinome of *O. tauri* is therefore a suitable model for signalling in free-living eukaryotes.

Keywords: Conserved eukaryote signalling, Protein kinase phylogeny, *Ostreococcus tauri*, Model kinome, Phosphorylation, TOR signalling, MAPK cascade, Circadian clock

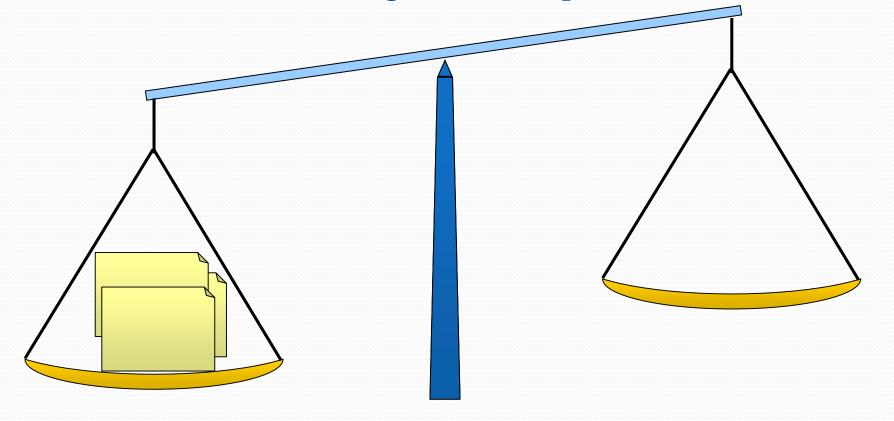
Background


Protein kinases are a major component of the complex signalling networks that coordinate all fundamental cellular processes, including transcription, cell cycle and metabolism. Protein kinases and phosphatases elicit reversible phosphorylation, which enable the rapid cellular responses that are crucial for survival in a continually changing environment. Protein kinases activate and deactivate proteins by addition of the gamma-phosphate from ATP to serine (S), threonine (T), tyrosine (Y), aspartate (D) or histidine (H) amino acid residues [1]. Cascades of consecutive kinase-mediated phosphorylation events constitute the backbone of signalling pathways [2]. The complexity of the signalling networks scales with size. Part of this complexity is constrained by the number of genes encoding protein kinases, also known as the kinome. The number of encoded protein kinases in free-living eukaryotes ranges from as little as 126 kinases in Saccharomyces cerevisiae [3] to ~1000

^{*} Correspondence: andrew.millar@ed.ac.uk

¹SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, Edinburgh, Edinburgh

Getting metadata

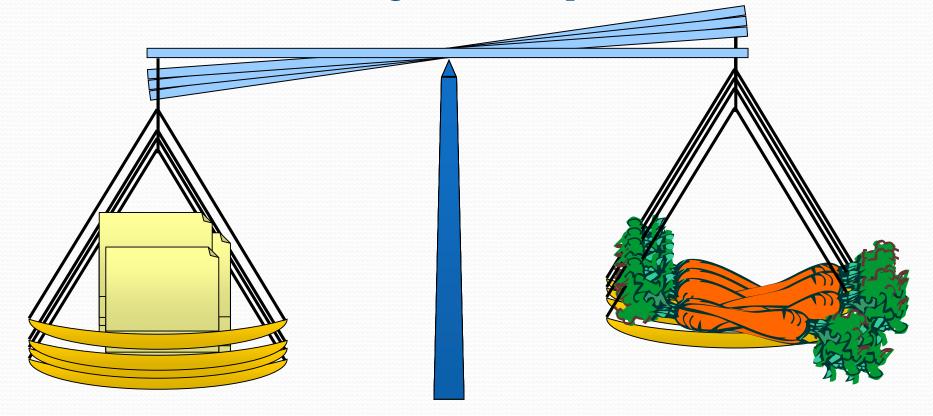

Getting metadata

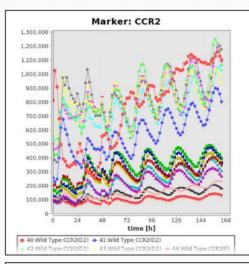
Getting meta data

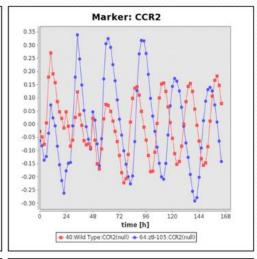
No one likes describing data for repositories

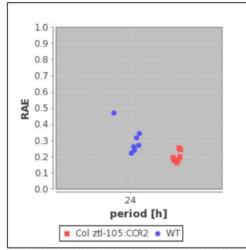
Getting metadata

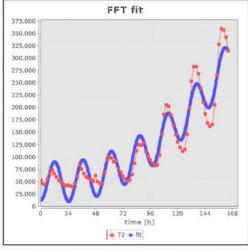
No one likes describing data for repositories



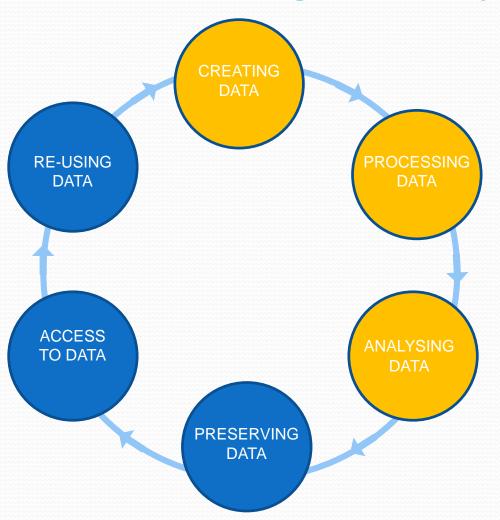

Getting metadata

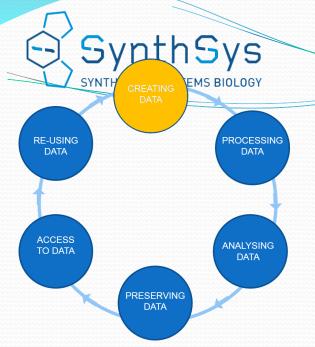

No one likes describing data for repositories





Tipping the balance





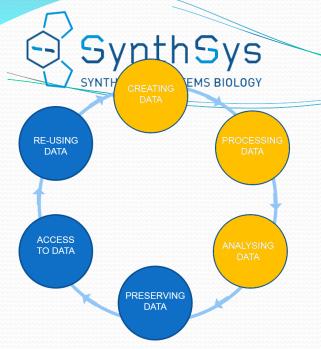
Data managment as part of the workflow

General repositories: SEEK and OpenBIS

- fine grained metadata,
- logical structure, data relationships
- customizable
- hooks for data processing

A			\times	< j	x OD				
Ä	A	В		С	D	E	F	G	Н
233	77835s	7	72	157	481	457	507	458	485
234	78963s	(69	156	480	465	507	464	480
235	80091s		77	152	480	462	499	462	475
236	81219s	- 1	74	164	502	454	514	464	481
237	82347s	- 1	73	152	478	463	510	455	499
238	83475s		76	141	480	465	513	463	495
239	84603s	(69	147	499	460	518	450	485
240	85731s		73	146	486	496	492	461	500
241	86859s		77	150	495	491	528	458	500
242	87987s	-	73	152	507	477	499	478	480
243	89115s	1	33	151	509	470	531	472	495
244	Date of mea	sureme	nt: 20		Time of me	asurement	19:20:40		
	March2012								
	C:\Users\Pi						March2012	2EmWL 1	gain M2 80
	2012 12 16						_	_	
	C:\Users\Pt		cume	nts\Tecan	\Magellan\	vsp\Catie\2	2012 12 16	wsp	
	595nm				-		-	0.0	
250	Unknown us	ser							
251	infinite 200								
252	Instrument :	serial nu	mber	9070018	34				
253	Plate				Table Trans				
254	Plate Descr	iption: [BD96	ft FluoroE	Blok1 - BD F	alcon 96 F	lat Transpa	rent/Black	
	Plate with C								
256	Barcode: No	0							
257	Part of Pla	ite							
258	Range: A1	:H12							
259	Tempera								
260	Mode: O								
261	Tempera	ture: 29	5°C						
262	Wait for								
263				: 29.0 °C					
264				e: 30.0 °C					
265	Kinetic C								
266	Number		s: 80						
267	Absorb								
268			Vavel	ength: 59	5 nm				
269				idth: 9 nn					
.00	11104341			Total of III					

AC TO PROCESSING DATA


OUP » GROWTH RATE » 187992378. (a Set 187992378900 [PS_PLATE_READER]

(C Data View

Parents (D

Data Set Proper	ties	Data View Parents (I
Sample	/PS GROUP/PL13 [PS IMG PLATE] ^	Data View
CCESS DATA rement	2012-12-16 ANALYSING DATA	Folder: 2012 12 16 GALgen
.mth Te	PRESERVING _2EmW1gain_M2_80c\	GALgenes contents
Wsp file	DATA	od of GAL10 in 0.0 od of GAL10 in 0.1
Instrument	200	od of GAL10 in 1p
Serial Nr	907001834	od of GAL10 in 2p
Plate desc.	[BD96ft FluoroBlok] - BD Falcon 96	od of GAL1 in 0.01 od of GAL1 in 0.1p
riace desc.	Flat Transparent/Black	od of GAL1 in 0.1p
Plate Cell	A1:H12	od of GAL1 in 2p R
Range	ALITIZ	od of GAL2 in 0.01
Temperature	29.5	od of GAL2 in 0.1p
[C]	29.3	od of GAL2 in 1p №
Min Temp. [C]	29.0	od of GAL2 in 2p R
		od of GAL3 in 0.01
Max Temp. [C]	30.0	od of GAL3 in 0.1p od of GAL3 in 1p N
	NOW HOW MANAGEMENT AND ADDRESS	od of GAL3 in 2p R
Shaking	Duration: 1000 sec; Mode: Linear;	od of GAL7 in 0.01
	Amplitude: 6 mm; Frequency: 57.9	od of GAL7 in 0.1p
March Control	rpm;	od of GAL7 in 1p №
Run Time	1days 45min 16s	od of GAL7 in 2p R
Channels	OD	od of GAL80 in 0.0
	485-525mGain	od of GAL80 in 0.1
	485-585mGain	od of GAL80 in 1p
Channel1	OD	od of GAL80 in 2p
	Absorbance	od of null in 0.01p
	595 nm reads:15	od of null in 0.1p N od of null in 1p Ma
	LA SCHOOL SALES	od of null in 2p Ra
Channel2	485-525mGain	nd of WT in 0.01n

A	ı	* :	X	V .	f_x	DD				
Ä	Α	В		C	D	E	F	G	Н	
233	77835s		72	157	48	31 45	7 507	458	485	
234	78963s		69	156	48	30 46	5 507	464	480	
235	80091s		77	152	48	30 46	2 499	462	475	
236	81219s		74	164	50	02 45	4 514	464	481	
237	82347s		73	152	4	78 46:	3 510	455	499	
238	83475s		76	141	48	30 46	5 513	463	495	
239	84603s		69	147	49	99 46	0 518	450	485	
240	85731s		73	146	48	36 49	6 492	461	500	
241	86859s		77	150	45	95 49	1 528	458	500	
242	87987s		73	152	50	07 47	7 499	478	480	
243	89115s		83	151	50	09 47	0 531	472	495	
244	Date of me	asureme	ent: 20	12-12-16	S/Time of	f measureme	ent: 19:20:40)		
245	March2012	2EmW	L 1gai	n M2 8	30cvcles	.mth				
						lan\mth\Cati	e\March201	2 2EmWL	1gain M2	80c
	2012 12 1									
			cumen	ts\Teca	n\Magel	lan\wsp\Cati	e\2012 12	16 wsp		
	595nm									
250	Unknown u	ser								
	infinite 200									
252	Instrument	serial nu	umber:	907001	834					
253	Plate									
254	Plate Desc	ription: I	BD96ft	Fluoro	Blok1 - E	BD Falcon 96	Flat Transi	parent/Blac	k	
	Plate with 0									
256	Barcode: N	0								
257	Part of Pla	ate								
258	Range: A	1:H12								
259	Tempera									
260	Mode: C									
261	Tempera		.5 °C							
262	Wait for									
263	Minimun			29.0 °C	:					
264	Maximu									
265	Kinetic (
266	Number		es: 80							
267	Absorb									
268	200000000000000000000000000000000000000	rement \	Wavele	nath: 59	95 nm					
269	The second second second second	rement l								
070	NI I	- CD	1 45							

Workflow

A B C D E F G H 37835s 72 157 481 457 507 458 485 34 78963s 69 156 480 465 507 464 480 35 8091s 77 152 480 462 499 462 475 36 81219s 74 164 502 454 514 464 481 37 82347s 73 152 478 463 510 455 499 38 83475s 76 141 480 465 513 463 495 39 84603s 69 147 499 460 518 450 485 40 85731s 73 146 486 496 492 461 500 41 86859s 77 150 495 491 528 458 500 42 87987s 73 152 507 477 499 478 480 43 89115s 83 151 509 470 531 472 495	A:	L	* : X	$\checkmark J$	x OD				
34 78963s 69 156 480 465 507 464 480 35 80091s 77 152 480 462 499 462 475 36 81219s 74 164 502 454 514 464 481 37 82347s 73 152 478 463 510 455 499 38 8347ss 76 141 480 465 513 463 495 39 84603s 69 147 499 460 518 450 485 40 85731s 73 146 486 496 492 461 500 41 86859s 77 150 495 491 528 458 500 42 87987s 73 152 507 477 499 478 480 43 89115s 83 151 509 470 531 472 495 44 Date of measurement: 2012-12-16/Time of measurement: 19:20:40	Ä	Α	В	C	D	E	F	G	Н
335 80091s 77 152 480 462 499 462 475 336 81219s 74 164 502 454 514 464 481 337 82347s 73 152 478 463 510 455 499 38 83475s 76 141 480 465 513 463 495 39 84603s 69 147 499 460 518 450 485 40 85731s 73 146 486 496 492 461 500 41 86859s 77 150 495 491 528 458 500 42 87987s 73 152 507 477 499 478 480 43 89115s 83 151 509 470 531 472 495 44 Date of measurement: 2012-12-16/Time of measurement: 19:20:40 495 <td>233</td> <td>77835s</td> <td>72</td> <td>157</td> <td>481</td> <td>457</td> <td>507</td> <td>458</td> <td>485</td>	233	77835s	72	157	481	457	507	458	485
336 81219s 74 164 502 454 514 464 481 337 82347s 73 152 478 463 510 455 499 38 83475s 76 141 480 465 513 463 495 39 84603s 69 147 499 460 518 450 485 40 85731s 73 146 486 496 492 461 500 41 86859s 77 150 495 491 528 458 500 42 87987s 73 152 507 477 499 478 480 43 89115s 83 151 509 470 531 472 495 44 Date of measurement: 2012-12-16/Time of measurement: 19:20:40	234	78963s	69	156	480	465	507	464	480
37 82347s 73 152 478 463 510 455 499 38 83475s 76 141 480 465 513 463 495 39 84603s 69 147 499 460 518 450 485 40 85731s 73 146 486 496 492 461 500 41 86859s 77 150 495 491 528 458 500 42 87987s 73 152 507 477 499 478 480 43 89115s 83 151 509 470 531 472 495 44 Date of measurement: 2012-12-16/Time of measurement: 19:20:40	235	80091s	77	152	480	462	499	462	475
38 83475s 76 141 480 465 513 463 495 39 84603s 69 147 499 460 518 450 485 40 85731s 73 146 486 496 492 461 500 41 86859s 77 150 495 491 528 458 500 42 87987s 73 152 507 477 499 478 480 43 89115s 83 151 509 470 531 472 495 44 Date of measurement: 2012-12-16/Time of measurement: 19:20:40	236	81219s	74	164	502	454	514	464	481
339 84603s 69 147 499 460 518 450 485 40 85731s 73 146 486 496 492 461 500 41 86859s 77 150 495 491 528 458 500 42 87987s 73 152 507 477 499 478 480 43 89115s 83 151 509 470 531 472 495 444 Date of measurement: 2012-12-16/Time of measurement: 19:20:40	237	82347s	73	152	478	463	510	455	499
40 85731s 73 146 486 496 492 461 500 418 86859s 77 150 495 491 528 458 500 42 87987s 73 152 507 477 499 478 480 443 89115s 83 151 509 470 531 472 495 444 Date of measurement: 2012-12-16/Time of measurement: 19:20:40	238	83475s	76	141	480	465	513	463	495
41 86859s 77 150 495 491 528 458 500 42 87987s 73 152 507 477 499 478 480 443 89115s 83 151 509 470 531 472 495 444 Date of measurement: 2012-12-16/Time of measurement: 19:20:40	239	84603s	69	147	499	460	518	450	485
42 87987s 73 152 507 477 499 478 480 43 89115s 83 151 509 470 531 472 495 444 Date of measurement: 2012-12-16/Time of measurement: 19:20:40	240	85731s	73	146	486	496	492	461	500
43 89115s 83 151 509 470 531 472 495 44 Date of measurement: 2012-12-16/Time of measurement: 19:20:40	241	86859s	77	150	495	491	528	458	500
44 Date of measurement: 2012-12-16/Time of measurement: 19:20:40	242	87987s	73	152	507	477	499	478	480
	243	89115s	83	151	509	470	531	472	495
	-						19:20:40	1.0000	

245 March2012_2EmWL_1gain_M2_80cycles.mth

246 C:\Users\Public\Documents\Tecan\Magellan\mth\Catie\March2012 2EmWL_1gain_M2_80cy 247 2012 12 16.wsp

200	С	D	E	F	G	
Ä.	2	3	4	5	6	
Š.	null in 2% Raf	WT in 2% Raf	WT in 2% Raf	GAL1 in 2% Raf	GAL2 in 2% Raf	(
N N	null in 2% Raf	WT in 2% Raf	WT in 2% Raf	GAL1 in 2% Raf	GAL2 in 2% Raf	(
N N	null in 1% Gal	WT in 1% Gal	WT in 1% Gal	GAL1 in 1% Gal	GAL2 in 1% Gal	(
M M M	null in 1% Gal	WT in 1% Gal	WT in 1% Gal	GAL1 in 1% Gal	GAL2 in 1% Gal	(
N N	null in 0.1% Gal	WT in 0.1% Gal	WT in 0.1% Gal	GAL1 in 0.1% Gal	GAL2 in 0.1% Gal	(
N N N	null in 0.1% Gal	WT in 0.1% Gal	WT in 0.1% Gal	contaminated	GAL2 in 0.1% Gal	(
N N	contaminated	WT in 0.01% Gal	WT in 0.01% Gal	GAL1 in 0.01% Gal	GAL2 in 0.01% Gal	(
N N N	null in 0.01% Gal	WT in 0.01% Gal	WT in 0.01% Gal	GAL1 in 0.01% Gal	GAL2 in 0.01% Gal	(

PROCESSING DATA

Workflow

ACCESS TO DATA

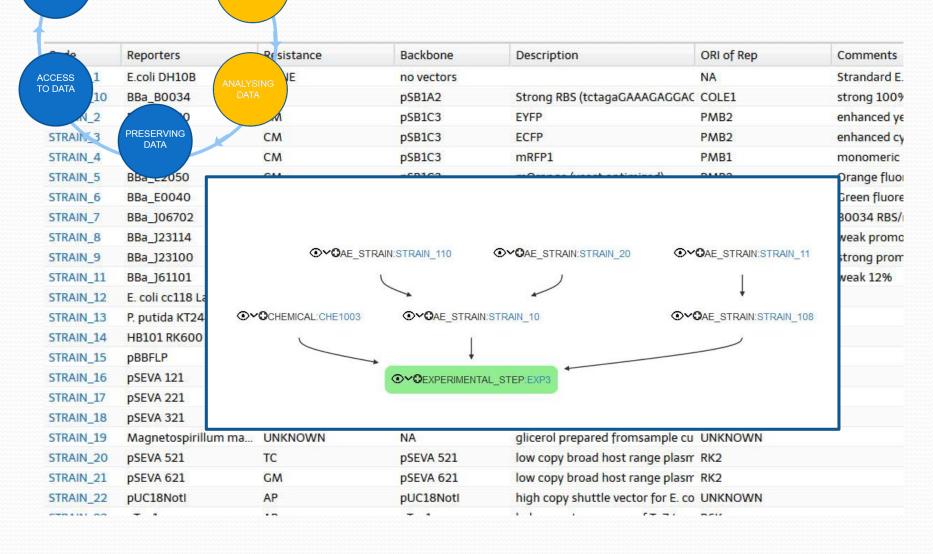
A.	L	* : X	$\checkmark J$	x OD				
À	Α	В	С	D	E	F	G	Н
233	77835s	72	157	481	457	507	458	485
234	78963s	69	156	480	465	507	464	480
235	80091s	77	152	480	462	499	462	475
236	81219s	74	164	502	454	514	464	481
237	82347s	73	152	478	463	510	455	499
238	83475s	76	141	480	465	513	463	495
239	84603s	69	147	499	460	518	450	485
240	85731s	73	146	486	496	492	461	500
241	86859s	77	150	495	491	528	458	500
242	87987s	73	152	507	477	499	478	480
243	89115s	83	151	509	470	531	472	495
244	Date of m	easurement: 2	012-12-16/	Time of me	asurement:	19:20:40		
245	March201	2 2EmWL 1c	ain M2 80	cycles mth				

246 C:\Users\Public\Documents\Tecan\Magellan\mth\Catie\March2012 2EmWL 1gain M2 80cy

11411 III 270 Nul

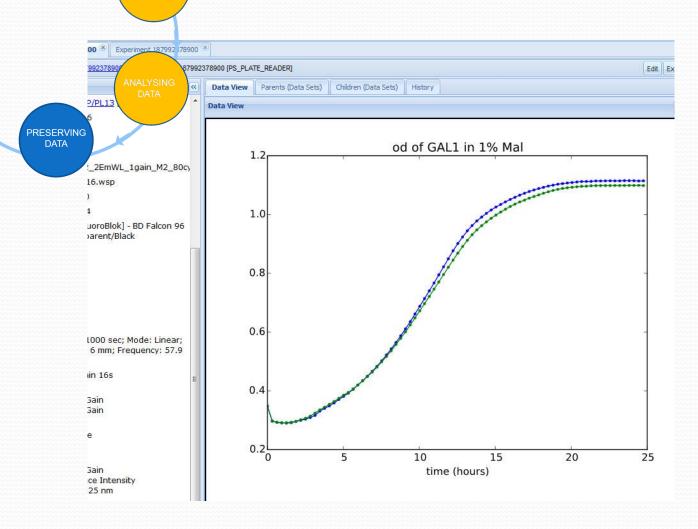
247 2012 12 16.wsp

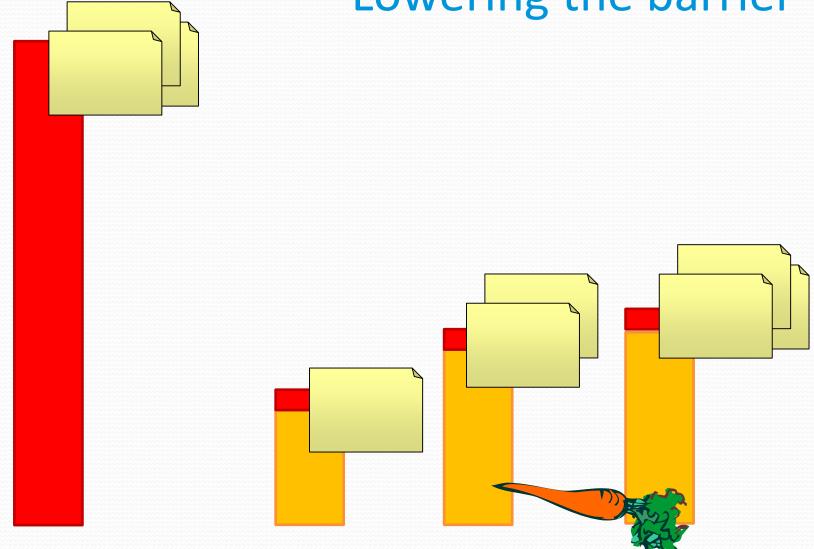
	D	E	F	G	
	3	4	5	6	
	WT in 2% Raf	WT in 2% Raf	GAL1 in 2% Raf	GAL2 in 2% Raf	(
	WT in 2% Raf	WT in 2% Raf	GAL1 in 2% Raf	GAL2 in 2% Raf	(
	WT in 1% Gal	WT in 1% Gal	GAL1 in 1% Gal	GAL2 in 1% Gal	(
	WT in 1% Gal	WT in 1% Gal	GAL1 in 1% Gal	GAL2 in 1% Gal	(
L	WT in 0.1% Gal	WT in 0.1% Gal	GAL1 in 0.1% Gal	GAL2 in 0.1% Gal	(
	WT in 0.1% Gal	WT in 0.1% Gal	contaminated	GAL2 in 0.1% Gal	(
	WT in 0.01% Gal	WT in 0.01% Gal	GAL1 in 0.01% Gal	GAL2 in 0.01% Gal	(
al	WT in 0.01% Gal	WT in 0.01% Gal	GAL1 in 0.01% Gal	GAL2 in 0.01% Gal	(



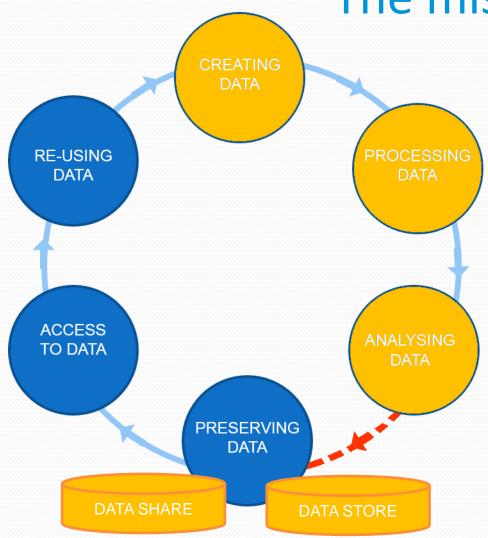
PROCESSING DATA

~ 1	_		B 11		001 50	
	Reporters	Resistance	Backbone	Description	ORI of Rep	Comments
CCESS 1	E.coli DH10B		no vectors		NA	Strandard E
10	BBa_B0034 DATA		pSB1A2	Strong RBS (tctagaGAAAGAGGAC	COLE1	strong 100
N_2		M	pSB1C3	EYFP	PMB2	enhanced y
STRAIN_3	PRESERVING DATA	CM	pSB1C3	ECFP	PMB2	enhanced o
STRAIN_4		CM	pSB1C3	mRFP1	PMB1	monomeric
STRAIN_5	BBa_c2050	CM	pSB1C3	mOrange (yeast optimized)	PMB2	Orange fluo
STRAIN_6	BBa_E0040	AP	pSB1A2	GFPmut3b	COLE1	Green fluor
STRAIN_7	BBa_J06702	AP	pSB1A2	mCherry (yeast version also)	COLE1	B0034 RBS
STRAIN_8	BBa_J23114	AP	p]61002	Weak promoter (tttatggctagctca	COLE1	weak prom
STRAIN_9	BBa_J23100	AP	p]61002	Strong promoter (ttgacggctagct	COLE1	strong pror
STRAIN_11	BBa_J61101	AP	pSB1A2	weak RBS (tctagaGAAAGACAGGA	COLE1	weak 12%
STRAIN_12	E. coli cc118 Lambda	NONE	no vectors	cloning strain to maintain RK6 pl	NA	
STRAIN_13	P. putida KT2440	NONE	no vectors	standard P. putida strain without	NA	
STRAIN_14	HB101 RK600	CM	no vectors	E. coli HB101 helper strain to mo	NA	
STRAIN_15	pBBFLP	TC	pBBFLP	Plasmid source Flipase	UNKNOWN	
STRAIN_16	pSEVA 121	AP	pSEVA 121	low copy broad host range plasm	RK2	
STRAIN_17	pSEVA 221	KM	pSEVA 221	low copy broad host range plasm	RK2	
STRAIN_18	pSEVA 321	CM	pSEVA 321	low copy broad host range plasm	RK2	
STRAIN_19	Magnetospirillum ma	UNKNOWN	NA	glicerol prepared fromsample cu	UNKNOWN	
STRAIN_20	pSEVA 521	TC	pSEVA 521	low copy broad host range plasm	RK2	
STRAIN_21	pSEVA 621	GM	pSEVA 621	low copy broad host range plasm	RK2	
STRAIN_22	pUC18NotI	AP	pUC18NotI	high copy shuttle vector for E. co	UNKNOWN	
				f 1	n	


PROCESSING DATA


RE-USING DATA PROCE

ACCESS TO DATA



Successful data management?

- is part of the research workflow not an extra burden
- solves user problems not creates new ones
- provides extra value for the user
- focuses on both data consumers and producers

The missing link

